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Executive Summary 
 
In a recent study, Energy Modelling Consultants were engaged by the 
Ministry of the Environment to estimate the extent that electricity 
prices would be increased by a charge on CO2 emissions by thermal 
plant. The model used in this study assumed a perfectly competitive 
market and risk neutrality, and estimated the increase in system 
short-run marginal cost (SRMC) of electricity that would arise from 
different levels of carbon charge. An annual average electricity 
emissions factor (EEF), defined to be the average increase in SRMC 
divided by the CO2 charge, was calculated for each year in the period 
2010-2032 under five scenarios corresponding to different choices of 
CO2 emissions charges and dates for commissioning new generation 
plant. Energy Modelling Consultants estimated the EEF in 2010 for a 
CO2 charge of $20/tonne CO2 to be 0.53 tonnes/MWh. 
 
As discussed in the report by Energy Modelling Consultants, the SRMC 
values used to calculate EEF will underestimate wholesale prices in 
electricity markets with imperfect competition. To estimate markups 
from CO2 charges in this setting, the EEF must be redefined as the 
increase in wholesale electricity price divided by CO2 charge. This 
report describes the application of some simple Cournot equilibrium 
models to examine the effect that potential exercise of market power 
by large thermal plant in the New Zealand wholesale electricity market 
will have on changes in prices with a CO2 charge. The models are 
calibrated to a selection of wet, dry and uncertain trading periods in 
2008 (the most recent year in which full data are available in the 
Electricity Commission's Centralized Data Set), and then run under a 
number of different assumptions on the marginal cost increase faced 
by generators that are not large thermal generators.  
 
We find:  
 

(1) Under our assumptions on strategic bidding by generators, 
the EEF estimates depend on the relative frequencies of dry 
and wet hydrological conditions in New Zealand’s hydro lakes. 

(2) Under our assumptions on strategic bidding by generators, 
estimates of EEF based on a selection of wet, dry and 
uncertain trading periods in 2008 differ from those computed 
under assumptions of perfect competition for 2010. 

(3) Assuming that the carbon charge is $12.50/tonne CO2, our 
models estimate that the equilibrium average EEF under 
market conditions prevailing in 2008, can vary between 0.613 
tonnes/MWh and 0.689 tonnes/MWh depending on the 
prevalence of wet hydrological conditions. 
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The results we present are based on a number of assumptions about 
the behaviour of market participants, and relative frequencies of types 
of trading period and hydrological conditions observed. Variations in 
these will give different results from those reported here. In particular 
we assume: 

 
(1) Large thermal plant operate as Cournot players; 
(2) Short-term electricity demand is inelastic and does not 

change in response to CO2 charges; 
(3) Hydro plant do not behave as Cournot players but adjust 

supply-function offers by uniformly increasing prices to reflect 
expected increases in opportunity cost; 

(4) The offer behaviour of generators that are not treated as 
Cournot players is modelled using historical offer stacks from 
2008. 

(5) Residual demand defined by the demand minus the offers of 
generators that are not large thermal plants can be 
represented by curves with constant elasticity; 

(6) Contract/retail positions are as estimated from observed 
generator behaviour in 2008 that is assumed to be in 
equilibrium, and these do not change in response to CO2 
charges. 
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 1.0 Introduction 
 
In a recent study [3], Energy Modelling Consultants estimated the 
extent that electricity prices would be increased by a charge on CO2 
emissions. The model used in this study assumed a perfectly 
competitive market and risk neutrality, and estimated the increase in 
the system short-run marginal cost (SRMC) of electricity that would 
arise from different levels of carbon charge.  
 
The study described in [3] used the SDDP code [5] to study the long 
run evolution of SRMC as new generation plant and transmission 
capacity is commissioned and demand grows. SDDP constructs 
approximately optimal reservoir release policies that minimize the 
expected fuel and shortage cost over a planning horizon with uncertain 
reservoir inflows. These policies give the (approximately) optimal 
releases for a risk-neutral central planner who seeks to maximize 
social welfare.  
 
The purpose of the study described in [3] was to estimate the increase 
in electricity prices that would result from charges on CO2 emissions 
The statistic used to represent this is called the electricity emissions 
factor (EEF), defined to be the increase in SRMC divided by carbon 
cost. Formally,  
 
EEF =  (SRMC with carbon charge - SRMC without carbon charge). 
     carbon charge 
 
As explained in [3], the system short-run marginal costs that emerge 
from such a study can be interpreted as electricity prices that might be 
observed in a perfectly competitive electricity market with risk-neutral 
agents. The New Zealand electricity market is not perfectly 
competitive, and agents are not risk neutral. When agents exercise 
market power, prices rise above SRMC. This means that EEF should be 
replaced by a market emissions factor EEF(m) that uses the wholesale 
electricity price (WEP) instead. Thus  
 
EEF(m) =  (WEP with carbon charge - WEP without carbon charge). 
     carbon charge 
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The purpose of this paper is to try and estimate an average EEF(m) for 
the year 20082 from historical observations of market behaviour. Our 
focus is thus to answer the question: “given the wholesale electricity 
market structure and transmission grid as in 2008, what would have 
been the expected increase in WEP from a charge on CO2 emissions of 
$12.50/tonne?” 
 
Since SRMC gives a lower bound on prices in a market with imperfect 
competition, it is tempting to suppose that one can prove 
mathematically that EEF(m) will always be higher than the value of 
EEF as defined in [3], and so that EEF is a theoretical lower bound on 
EEF(m). However, there are contrived examples (see [1]) where a 
charge on CO2 emissions can be shown to increase SRMC and decrease 
WEP3. So the relative sizes of EEF(m) and EEF must therefore be 
settled by empirical modelling. This means that the setting and 
assumptions about agent behaviour must be formulated carefully to 
give realistic estimates. 
 
In New Zealand, electricity prices fluctuate seasonally primarily due to 
the amount of hydro storage available. The plot in Figure 1 shows 
electricity prices at 6pm for three nodes (Haywards, Benmore and 
Otahuhu) over 2008. In this figure, we isolate three types of day 
during the year: on normal days prices typically remain under $100; 
on dry days, prices exceed $300; and in the lead in to a potentially dry 
period (uncertain days), prices are between $100 and $200. 
                                                 
2 The year 2008 is the latest year for which the Electricity Commission Centralized 
Data Set [2] contains complete records of generator offers. 
3 These counterintuitive results are manifestations of “second best” welfare results 
which show that removing only one of several market imperfections can result in 
decreases in welfare. The examples involve a transmission line that is constrained in 
equilibrium, and a charge on CO2 emissions results in a new equilibrium with no 
congestion and lower prices. 
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Figure 1: 6pm peak nodal prices for 2008. 

 
In the analysis below, we select periods from each of these times of 
the year to determine how the effect of a carbon charge may differ 
depending on the type of day and type of trading period. We also 
consider “very wet” hydrological conditions in which prices are very 
low, except possibly in some high demand trading periods. An average 
EEF(m) for 2008 can then be estimated by weighting the average 
EEF(m) for each type of trading period by its frequency throughout the 
year.  
 
In order to measure the relative frequency of these types of days over 
the longer term, we have extracted a price duration curve 
corresponding to offpeak (midnight) weekday periods over the time 
horizon January 1, 2005 - November 20, 2008 as shown in Figure 2. 
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Figure 2: Offpeak Price Duration Curve 2005-2008. 

 
We divide the offpeak prices into four groups indexed by i=wet, 
normal, uncertain, dry. This enables us to estimate the relative 
frequencies s(i) of the types of trading periods. 
 
We define dry days as those with offpeak prices above $130. Uncertain 
days are ones with prices between $70 and $130, and we analyse 
three threshold prices for the normal/wet days: $30, $20 and $104.  
 
The relative frequencies of each type of day are shown in Table 1 
below for three different price thresholds for normal and wet years. 
  

 s(i) 
 $30 $20 $10 
Wet 0.110 0.060 0.011 
Normal 0.510 0.560 0.609 
Uncertain 0.284 0.284 0.284 
Dry 0.096 0.096 0.096 

 
Table 1: Relative Frequencies s(i) (estimated from 2005-2008). 

 
Due to variations in demand, prices also fluctuate over the day. To 
model this intra-day variation we consider three demand levels 
                                                 
4 Our purpose here is to enable a sensitivity test to be conducted on our 2008 
results. Since 2008 was a dry year, we expect the EEF(m) for 2008 to correspond to 
a low frequency of wet days, and so a higher than average EEF(m). 
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indexed by p equal to peak, shoulder and offpeak. We select trading 
periods at 6pm to represent peak periods, midday to represent 
shoulder periods, and midnight to represent offpeak periods. 
 
Using a similar method to that used to estimate values of s(i), we can 
compute the relative frequencies r(p) of peak, shoulder and off-peak 
periods. 
 
For each trading period we compute an average price over 2008. This 
gives 48 numbers that are estimates of expected price in that period. 
By sorting these we arrive at a classification of periods into 16 offpeak 
periods between 10:30pm and 6:30am (trading periods 46-13), and 
16 peak periods to be from 7:30am to 11:00am (trading periods 16-
22) and 4:30pm to 9pm (trading periods 34-41) with the remaining 
periods classified as shoulder periods. This gives r(p) as shown in 
Table 2 below. 
 

p r(p) 
Offpeak 0.333 
Shoulder 0.333 
Peak 0.333 

 
Table 2: Relative Frequencies of Trading Periods. 
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2.0 Our Model of NZEM 
 
The model we adopt assumes that the large thermal generators 
Contact Energy and Genesis Energy offer their thermal generation to 
the market as agents in a Cournot game. In general we assume that 
there is insignificant congestion in the transmission system5. The 
remaining generators that offer to the wholesale market are not 
modelled as strategic Cournot players, but are considered to behave in 
aggregate as they did before the CO2 charges were imposed, however 
with an increase in price of the residual demand stack. This means 
that they are strategic inasmuch as their original observed offers 
represent strategic behaviour, but they do not alter this in response to 
changes in offers of the large thermal plants, apart from increasing the 
price of their offers by a fixed markup, K. 
 
Although they comprise a mix of generation technologies, all the 
generators that offer to the wholesale market apart from the large 
thermal plants operated by Contact and Genesis are referred to as 
“hydro plants”, since they include the generating stations of Meridian 
Energy, Mighty River Power, the Clutha system, Waikaremoana, and 
the Tongariro Power Development as well as all the plant operated by 
Trustpower, which includes several hydro schemes6.  
 

2.1 Data 
 
The data that we use in our models are taken from the report [3] and 
are as follows. 
 
Fuel Costs and Carbon Content  
 

Fuel Type Price ($ / GJ) Tonnes CO2 / GJ 
Gas 6.0 0.0528 
Coal 4.0 0.0912 

 
Table 3: Fuel properties (source [3]). 

 
                                                 
5 Since transmission congestion complicates the calculation of EEF(m) considerably, 
we have chosen not to include this feature. Preliminary experiments in some sample 
dry periods show that congestion gives EEF(m) values that vary with location. 
6 Note that the offering stations in the Centralized Data Set apart from the large 
thermal plants operated by Contact and Genesis includes geothermal stations, wind 
farms, and smaller thermal plant like Whirinaki and Southdown, so these are also 
included in the description “hydro plants”. 
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Plant Properties 
 

Plant Fuel Type Heat Rate (GJ/MW) Capacity (MW) 
Huntly Coal 10.50 972 
E3P Gas 7.08 385 
P50 Gas 9.50 50 
Taranaki CC Gas 7.30 377 
Otahuhu B Gas 7.05 404 

 
Table 4: Plant properties (source [3]). 

 
 

Offer Stacks of Hydro Plants 
 
For the trading periods we study, the offer stacks of all hydro 
generators (i.e. those plant not listed in Table 4) are extracted from 
the Electricity Commission Centralized Data Set [2] and aggregated, to 
yield a combined offer stack as shown in Figure 3. 
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Figure 3: Hydro plants’ aggregated offer stack. 

 
 
Demand  
 
The demand for each trading period has also been extracted from [2]. 
We treat the wholesale market as a single node and assume that total 
demand is inelastic in the short term. To account for transmission 
losses we estimate an effective demand from the offer stacks and the 
actual prices; this inflates the national demand by between 5% and 
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13% depending on the time of day or year. The inflation factor is 
chosen to reproduce the observed prices from the offer stacks. 
 

2.2 Calibration to 2008 observed prices 
 
Before one can estimate the value of EEF(m), the Cournot model we 
use must be calibrated to verify that it predicts observed prices 
without a CO2 charge.  
 
To do this the total observed demand and the aggregated offer curve 
of plants not in Table 4 are combined to form a stepped residual 
demand curve that is then approximated by a smooth curve. In most 
trading periods the residual demand curve is approximated well by a 
curve with constant elasticity as shown in Figure 4. 

Inverse Demand Curve (Wet / Peak Period)

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generation

P
ric

e

Actual Demand Curve Contant Elasticity Curve

 
Figure 4: Constant elasticity demand curve. 

 
Thus residual demand D(p) at price p is modelled as  
 

 γ−= )()(
0

0 p
pDpD  

 
where γ>0 is the price-elasticity of residual demand.  
 
For a given trading period we then estimate the level of retail load and 
contracting that Contact and Genesis are facing in the trading period, 
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and construct a Nash-Cournot equilibrium for this period7. The 
estimation of contract levels in 2008 is based on published information 
about each company’s load obligations [10] and observations on the 
offer stack of each generator. It is well-known (see e.g. [4]) that in a 
supply-function equilibrium, a generator with a contract for differences 
of quantity Q will offer generation at a price below marginal cost up to 
Q, and then bid with a positive markup above Q.  An example of this 
behaviour is illustrated for a generator with constant marginal cost in 
Figure 5. 
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Figure 5: Example shape of an equilibrium supply function. Here 

capacity is 1000MW, Q = 600 and marginal cost = $60. 
 
This enables us to use the marginal cost and bidding behaviour seen in 
historical offer stacks to estimate the contract and retail exposure of 
each generator in the trading period we are studying. 
 
The results of this calibration exercise are the following estimated 
contract/retail levels. 
 
 
 
 
 
                                                 
7 The procedure for doing this is described in Section 2.3. We assume in our analysis 
that contract/retail quantities are not changed by the addition of a CO2 charge.  
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 Genesis Contact 
Off Peak 500 MW 150 MW 
Shoulder 750 MW 300 MW 
Peak 850 MW 400 MW 

 
Table 5: Estimated contract/retail levels in normal periods. 

 
 Genesis Contact 
Off Peak 500 MW 250 MW 
Shoulder 750 MW 400 MW 
Peak 900 MW 550 MW 

 
Table 6: Estimated contract/retail levels in uncertain periods. 

 
 

 Genesis Contact 
Off Peak 500 MW 400 MW 
Shoulder 750 MW 500 MW 
Peak 850 MW 600 MW 

 
Table 7: Estimated contract/retail levels in dry periods. 

 
The Nash-Cournot equilibrium with the estimated contract level is 
computed for each trading period. The price predicted from this is then 
compared with the observed price and used to make small 
adjustments to the contract level and residual demand curve in order 
to give a close match in prices.  
 

2.3 Solving Nash-Cournot Equilibrium Problems 
 
In our experiments Nash-Cournot equilibrium problems are solved on 
normal, uncertain and dry days, each for peak, shoulder and offpeak 
periods. Since results vary, we sample N=25 weekdays from each type 
of day, and average the EEF(m) values over these 25 outcomes. 
  
The dry periods were taken from five consecutive weeks in May-June 
2008, the normal periods were taken from five consecutive weeks in 
October-November 2008 and the uncertain periods were taken from 
five consecutive weeks in March-April 2008. 
 
This gives a total of 225 equilibrium problems. For each problem the 
price is given by a residual demand curve (discussed in section 2.2). 
Genesis and Contact then choose their thermal plants’ generation 
levels so as to maximize their respective profits. The equilibrium is 
computed using a fictitious play approach (see e.g. [9]), whereby each 
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firm optimizes assuming the other is fixed. This is repeated until the 
generation levels converge to a fixed point – the Nash equilibrium. 
 
For purposes of illustration, suppose that there is no markup in prices 
from the hydro plants in response to a carbon charge (K=0). If a 
carbon charge is added this will increase the thermal plants’ fuel costs 
yielding to a new equilibrium point with a different price. The EEF(m) 
for each period can then be computed from the formula on page 5. 
 
Figures 6 – 14 plot computed EEF(m) against the historically observed 
price, for a carbon charge of $12.50 / tonne CO2, for each of the 225 
periods sampled. Each plot shows N= 25 points. 
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Figure 6: EEF(m) vs Price – Normal, offpeak periods, K = 0. 
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Figure 7: EEF(m) vs Price – Uncertain, offpeak periods, K = 0. 
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Figure 8: EEF(m) vs Price – Dry, offpeak periods, K = 0. 
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Figure 9: EEF(m) vs Price – Normal, shoulder periods, K = 0. 
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Figure 10: EEF(m) vs Price – Uncertain, shoulder periods, K = 0. 
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Figure 11: EEF(m) vs Price – Dry, shoulder periods, K = 0. 
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Figure 12: EEF(m) vs Price – Normal, peak periods, K = 0. 
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Figure 13: EEF(m) vs Price – Uncertain, peak periods, K = 0. 
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Figure 14: EEF(m) vs Price – Dry, peak periods, K = 0. 

 

2.4 Estimation of K  
 
In this section we discuss the choice of K we use in our model. Recall 
that K is the markup that we expect to see in the offer stack 
corresponding to the generators that are not Cournot players, when 
CO2 charges are imposed on thermal plants. 
 
The generators in our model that are not Cournot players are mainly 
hydro generators8. If we ignore river-valley constraints, cascading 
reservoirs, resource consents etc. then the marginal cost function for a 
hydro generator contains a single tranche with quantity equal to the 
capacity of the hydro plant, and price equal to its marginal water value 
π. In the absence of constraints a price-taking hydro operator would 
offer this tranche to the market, so as to generate at zero if prices are 
below π, and generate at its capacity if prices exceed π.  
 
In practice the stack that each hydro generator offers is not perfectly 
competitive. It can be shown in the theory of supply-function 
equilibrium (see e.g. [4]) that generators offer at less than marginal 
cost up to their contract point Q, and mark up their offer above 
marginal cost beyond Q. A stylized example of such a curve is shown 
in Figure 5, reproduced as Figure 15 below.  
                                                 
8 Recall that they consist of all offering generators listed in the CDS apart from those 
in Table 4, so they include the plant of Meridian Energy, Mighty River Power, the 
Clutha system, Waikaremoana and the Tongariro Power Development as well as all 
the plant operated by Trustpower, which includes several hydro schemes. 
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Figure 15: Example shape of an equilibrium supply function. Here 
capacity is 1000MW, contract quantity = 600 and marginal cost = $60 
 
Consider such an offer curve for a hydro generator. If its marginal cost 
increases, then according to the theory, the equilibrium supply 
function for the generator will increase at the contract point Q by the 
increase in marginal cost faced by the generator.  In Figure 6 this 
means that the step curve for the generator shifts up by the increase 
in marginal cost and the equilibrium supply function adjusts 
accordingly.  
 
We assume therefore that each hydro generator’s supply function 
moves up by the increase K in marginal water value that arises from a 
CO2 charge. Assuming equilibrium, this increase of K is exact on the 
tranche corresponding to the contract position of the generator.  
 
We make the assumption that the increase is equal to K at all points 
on the offer stack of each hydro generator, and therefore equal to K at 
all points on the aggregated stack of all the hydro generators. This is 
illustrated in Figure 16. 
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Figure 16: Example of two offer stacks aggregated. In equilibrium offer 
prices at marginal costs π1 and π2 would move up by K. We assume all 
other offer prices increase by K also. 
 
It remains to estimate the magnitude of the markup K that arises from 
a CO2 charge. The marginal water value in a market with imperfect 
competition is different from that in a perfectly competitive market. 
Both values represent an opportunity cost of using water now rather 
than delaying its release. In the market this opportunity cost is defined 
in terms of future electricity prices (rather than displaced 
thermal/shortage costs).  This makes the estimation of opportunity 
cost a challenging problem9. 
 
Our approach is to model the markup in water value K in terms of the 
expected increase in future prices for electricity i.e. the future EEF(m) 
values). The expected increase in future prices of electricity results in 
an increase K in marginal water value that depends on the hydrological 
conditions that are being experienced at the time. Thus we define a 
different markup Ki for each hydrological state i = wet, normal, 
uncertain, or dry, and define  
 

E(K,i,p) =  average EEF(m) in state i and period type p when 
hydro markup Ki  equals K. 

 
                                                 
9 Game-theory models for constructing these estimates using a form of backwards 
induction on reservoir state variables have been developed and implemented in code 
(see e.g.  Scott and Read [8]) but the existence and uniqueness of Nash equilibria in 
such multi-stage problems is not guaranteed in general. 
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where i = wet, normal, uncertain, dry.  
 
The complication that this raises is that the markup in each state not 
only arises from the expected future EEF(m), but it is also used in the 
computation of EEF(m) when solving for the Nash-Cournot equilibrium. 
This circularity results in a fixed-point computation that we now 
describe in more detail. 
 
An extra unit of water available in hydrological state i may be used in 
a future hydrological state j and trading period p, where p = offpeak, 
shoulder and peak. We define 
 

P(i,j,p) =  proportion of future trading periods of type p and 
hydrological state j that an extra unit of water will be 
used in to generate power given that the system is in 
hydrological state i10. 

 
The proportions P(i,j,p) arise from hydro generators optimizing the use 
of stored water, and so estimating these quantities accurately needs 
an optimization model for hydro-generators (that will also involve 
expectations of future prices in the wholesale market).  
 
For simplicity, we assume that P(i,j,p) has the following form: 
 

P(i,j,p) = r(p), if i = wet and j = wet, 
  = r(p)s(j), if i = normal or uncertain, 
  = r(p), if i = dry and j = dry, 
  = 0,   otherwise. 
 

Recall that r(p) gives the proportion of trading periods of type p, and 
s(j) gives the probability of observing system hydrological state j. Our 
assumption about P(i,j,p) means that: 
 

1. If the system is in a wet state then any additional water is 
certain to be used in that state. In other words additional water 
has probability zero of being used in a normal, uncertain or dry 
state. Since in a wet state, additional water is almost certain to 
be used immediately or spilt as the reservoirs are close to full, 
this is a reasonable approximation. 

 
                                                 
10 The parameters P(i,j,p) are NOT transition probabilities of a Markov chain, but 
represent steady-state probabilities of the use of water based on an optimal decision 
process.  
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2. If the system is in a dry state then any additional water is 
certain to be used in that state. In other words additional water 
has probability zero of being used in a normal, uncertain or wet 
state. Since in a dry state, additional water is almost certain to 
be used immediately in that state or kept for an even drier state, 
this is a reasonable approximation. 

 
3. If the system is in a normal or uncertain state then any 

additional water will be used in one of the four hydrological 
states depending on their relative likelihood11.  

 
Based on this approximation we can compute the markup K for each 
hydrological state by solving the following system: 
 
 Kwet =  0 
 Kdry =  Σp P(dry,dry,p)E(Kdry,dry,p) 
 Knormal =  Σj Σp P(normal,j,p)E(Kj,j,p) 

Kuncertain =  Σj Σp P(uncertain,j,p)E(Kj,j,p) 
 

Observe that since P(normal,j,p) = P(uncertain,j,p), the solution to the 
system will satisfy Knormal = Kuncertain. This means that the solution can 
be computed as a sequence of one-dimensional fixed-point iterations. 

 
If the day is wet then we assume that it is difficult to retain water for 
later use. Thus we set Kwet = 0 for this case. Any nonzero values of 
EEF(m) in the wet state come about from thermal capacity being 
required in some peak periods where it corresponds to the increase in 
gas cost from a CO2 charge. For these periods, we assume that the 
peaking thermal plant will be a gas turbine12. For a CO2 charge of 
$12.50 this gives an EEF(m) of  approximately 0.385 tonnes/MWh in a 
wet/peak period. 
 
Since the computation of E(K,j,p) requires in each case the numerical 
solution of N=25 Nash-Cournot equilibrium problems, we cannot solve 
the fixed-point iteration analytically for dry, uncertain or normal 
markup values. The calculation of Kdry, Knormal, and Kuncertain thus 
requires an iterative procedure as follows: 
 
 
 
                                                 
11 We assume here that being in an uncertain state does not make dry future periods 
more likely than being in a normal state, although this could be an extension of our 
model. 
12 We assume that the gas plant is on the margin in these periods and all plant are 
bidding competitively, so EEF(m) will correspond to an increase in SRMC in this case. 
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Computation of Kdry 
Step 0: Set K=0. 
Step 1: Increase prices in the residual demand curve by K and solve 
for Nash-Cournot equilibrium in each of the N sample cases in dry 
peak, dry offpeak and dry shoulder periods. 
Step 2: Compute the average EEF(m) for each of dry peak, dry offpeak 
and dry shoulder periods. 
Step 3: Set K= weighted average of the EEF(m) values from Step 2.  
Step 4: If K has not converged then go to Step 1. 
 
The result gives a value of K for dry days that has the property that if 
it is added to the residual demand curve for dry peak, shoulder, and 
offpeak periods, and if EEF(m) is computed for each of these periods, 
then the weighted average of EEF(m) equals the markup K. 
 
Computation of Kuncertain=Knormal 

Step 0: Set K=0. 
Step 1: Increase prices in the residual demand curve by K and solve 
for Nash-Cournot equilibrium in each of the N sample cases in normal 
peak, normal offpeak and normal shoulder periods, and for each of the 
N sample cases in uncertain peak, uncertain offpeak and uncertain 
shoulder periods. 
Step 2: Compute average EEF(m) for normal peak, normal offpeak and 
normal shoulder periods, and for uncertain peak, uncertain offpeak 
and uncertain shoulder periods. 
Step 3: Set K = weighted average of the EEF(m) values from Step 2 
and the EEF(m) values already computed for dry and wet days. 
Step 4: If K has not converged then go to Step 1. 
 
 
The result gives a value of K for normal or uncertain days that has the 
property that if it is added to the residual demand curve for these 
sorts of days, then the average EEF(m) computed over all types of 
periods returns the markup K.  Observe that this final value of K is the 
same as the average EEF(m) for the CO2 charge being considered, and 
is thus the value that we report for this case. 
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3.0 Results  
 
As shown in Table 1, we have allowed for different proportions of wet 
periods by changing the price threshold. We will first present results 
corresponding to values of s(i) corresponding to a normal/wet price 
threshold of $20. We assume throughout this section that the CO2 
charge is $12.50/tonne. This gives an average EEF(m) of 0.65 
tonnes/MWh as follows. 
 
Wet Periods 
 
The value of EEF(m) for wet periods is zero except in peak periods 
where it corresponds to the increase in gas cost from a CO2 charge. 
 
For these periods, we assume that the peaking thermal plant will be a 
gas turbine. The EEF(m) for wet/peak periods is therefore found from 
the heat rate of a gas turbine (e.g. Taranaki CC) multiplied by the 
carbon content of gas: 

 
 E(Kwet,wet,peak) = 7.3 GJ/MWh × 0.0528 tonnes/GJ 
  = 0.385 tonnes/MWh. 
 
Dry Periods 
 
For dry periods Kdry converges to 0.854 tonnes/MWh13. 
 
Normal/Uncertain Periods 
 
Using the estimates of s(i) and r(p) from Tables 1 and 2, Knormal 

converges to 0.65 tonnes/MWh. This is the same value as Kuncertain. 
Given these values of K we can compute EEF(m) at convergence for 
each type of day and period. This gives the values shown in Table 8. 
 
                                                 
13 This figure is based on the assumption that if the system is in a dry state then any 
additional water is certain to be used in that state. Thermal plants are generally at 
capacity in this hydrological state except in offpeak periods where they withhold 
more as CO2 charges are applied.  The resulting increase in average price in these 
periods means that hydro generators mark up their supply curves, leading to new 
Nash-Cournot equilibria in each sample period. This mechanism is quite sensitive to 
the available capacity of thermal plant. If all thermal plant are at capacity in all 
offpeak periods then for any K, E(K,dry,p) is determined by the hydro stack for all 
periods p and so equals K, meaning that there are infinitely many solutions to our 
recursion for K, resulting in an infinite range of EEF(m) values. However even if all 
thermal plant are at capacity in offpeak periods, and we were to choose Kdry=0 as 
the lowest possible equilibrium markup, then we obtain a overall estimate of EEF(m) 
of 0.56 tonnes/MWh. 
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 Off Peak Shoulder Peak 
Wet 0.000 0.000 0.385 
Normal 0.638 0.665 0.667 
Uncertain 0.680 0.659 0.695 
Dry 0.854 0.854 0.854 

 
Table 8: EEF(m) values for different types of day and period. 

 
Based on the estimates of s(i) and r(p) from Tables 1 and 2, the 
overall average EEF(m) for this experiment is 0.65 tonnes/MWh (i.e. 
the same value of K for normal/uncertain periods). 
 
For the equilibrium values of K, the distributions of EEF(m) against 
price for each type of day and period are shown in Figures 17 – 25. 
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Figure 17: EEF(m) vs Price – Normal, peak periods. 
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Figure 18: EEF(m) vs Price – Uncertain, peak periods. 
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Figure 19: EEF(m) vs Price – Dry, peak periods. 
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Figure 20: EEF(m) vs Price – Normal, shoulder periods. 
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Figure 21: EEF(m) vs Price – Uncertain, shoulder periods. 
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Figure 22: EEF(m) vs Price – Dry, shoulder periods. 
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Figure 23: EEF(m) vs Price – Normal, offpeak periods. 
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Figure 24: EEF(m) vs Price – Uncertain, offpeak periods. 
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Figure 25: EEF(m) vs Price – Dry, offpeak periods. 

 
 
Observe that the final value of average EEF(m) depends on the 
relative frequencies of wet and dry hydrological conditions. If there are 
fewer wet days then the average EEF(m) value will increase. To test 
this computationally, we recomputed EEF(m) with different values of 
s(i) taken from Table 1.14 
 
First, if we assume that the threshold price between normal and wet is 
$30, then this increases the proportion of wet days (from 0.060 to 
0.110). This leads to a lower EEF(m) of 0.613 tonnes/MWh. 
  
Now, if we assume that the threshold price between normal and wet is 
$10, then this reduces the proportion of wet days (from 0.060 to 
0.011). This leads to a higher EEF(m) of 0.689 tonnes/MWh.  
 
 

4.0 Discussion and Extensions 
 
This report presents a new perspective on the impact of CO2 charges 
on New Zealand wholesale electricity prices. Experiments with a model 
of strategic behaviour by generators applied to a selection of wet, dry 
and uncertain trading periods in 2008, predict higher markups under 
CO2 charges than those predicted by Energy Modelling Consultants for 
2010 under a central planning model. 
                                                 
14 Observe that it is not possible in these experiments to simply weight the EEF(m) 
values in Table 8 with new probabilities, since Knormal and Kuncertain will be different, 
leading to different EEF(m) values in Table 8. A completely new set of Nash-Cournot 
equilibria must be computed. 
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The results in our report are based on some key modelling 
assumptions. For computational convenience we assume a Cournot 
duopoly consisting of large strategic thermal generators. The Cournot 
model means that each thermal generator injects a fixed quantity to 
the market assuming that its competitor also does the same (and does 
not vary its input with price as it would with a supply-function offer).  
 
We treat the other generators in aggregate as offering a fixed supply 
function assumed to be the aggregate of optimal hydro offers. When 
opportunity costs increase by K, we assume that the optimal supply-
function offers move up uniformly by K (at least in aggregate). We do 
not assume that the shape of this curve alters strategically to respond 
to the Cournot players’ offers.   
 
We have not attempted to give estimates of the statistical reliability of 
our results – these are difficult to obtain when conjectures are being 
made about the behaviour of electricity market participants and the 
degree to which they exploit market power opportunities. We observe 
however that our results can be quite sensitive to assumptions on the 
relative frequencies of different hydrological conditions and whether 
thermal plant are at capacity in equilibrium in dry hydrological 
conditions. 
 
There are obvious extensions to this work that attempt to include 
transmission constraints. These complicate the analysis in several 
ways. Contract/retail positions become dependent on location, and the 
agents have a set of location-dependent actions in equilibrium. 
Moreover with possible transmission congestion, the equilibria 
calculation for agents under the assumption of perfect rationality 
becomes more difficult, to the extent that pure-strategy equilibria may 
fail to exist or be unique. From a policy perspective, we have found in 
cases where equilibria are computable that transmission constraints 
can lead to different estimates of EEF(m) for different locations. 
 
Of perhaps more importance than including transmission constraints is 
a detailed estimation of the probabilities P(K,i,j,p). Marginal water 
values that give opportunity costs of generation come from hydro-
generators’ reservoir optimization policies. We have not modelled 
these in this report and for simplicity assumed that the mixture of 
outcomes from the Cournot equilibria under different hydrological 
conditions are essentially independent of these policies. A more 
comprehensive analysis would need to account for them more 
thoroughly. 
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Finally, our model uses the historical offer stacks from 2008 to 
construct residual demand curves for our Cournot model. To estimate 
EEF(m) in future years, one might argue that these offer stacks reflect 
a range of possible hydrological conditions, and so they can be used in 
such a model with an appropriate change in s(i). Nevertheless the 
accuracy of predictions of EEF(m) for future years will depend on the 
extent that these historical offers represent generator behaviour in the 
future.  
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